Modeling Non-Equilibrium Dynamics of a Discrete Probability Distribution: General Rate Equation for Maximal Entropy Generation in a Maximum-Entropy Landscape with Time-Dependent Constraints

نویسنده

  • Gian Paolo Beretta
چکیده

A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy generation analysis of non-newtonian fluid in rotational flow

The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...

متن کامل

Determination of Maximum Bayesian Entropy Probability Distribution

In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.

متن کامل

Modeling of the Maximum Entropy Problem as an Optimal Control Problem and its Application to Pdf Estimation of Electricity Price

In this paper, the continuous optimal control theory is used to model and solve the maximum entropy problem for a continuous random variable. The maximum entropy principle provides a method to obtain least-biased probability density function (Pdf) estimation. In this paper, to find a closed form solution for the maximum entropy problem with any number of moment constraints, the entropy is consi...

متن کامل

Velocity Distribution in the 90-degree Bend based on the Probability and Entropy Concept

Practical concept of velocity distribution of pressure flow in the bends is interesting and hence, the professional engineering design has been investigated in the current study. This paper shows that velocity distribution in the bends can be analyzed in terms of the probability distributions. The concept of entropy based on the probability is an applied and new approach to achieve velocity pro...

متن کامل

Speed Gradient and MaxEnt Principles for Shannon and Tsallis Entropies

In this paper we consider dynamics of non-stationary processes that follow the MaxEnt principle. We derive a set of equations describing dynamics of a system for Shannon and Tsallis entropies. Systems with discrete probability distribution are considered under mass conservation and energy conservation constraints. The existence and uniqueness of solution are established and asymptotic stability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2008